Title
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning.
Abstract
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Year
Venue
Keywords
2019
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019)
generative model,multinomial distribution
Field
DocType
Volume
Computer science,Artificial intelligence,Feature learning,Machine learning,Generative model
Journal
32
ISSN
Citations 
PageRank 
1049-5258
2
0.36
References 
Authors
0
5
Name
Order
Citations
PageRank
Fan-Yun Sun120.70
Meng Qu2116337.34
Hoffmann, Jordan320.70
Chin-Wei Huang485.18
Jian Tang5132259.93