Title
A hybrid model for estimation of ground movements due to mechanized tunnel excavation
Abstract
AbstractAbstractTo provide realistic predictions of mechanized tunnel excavation‐induced ground movements, this research develops an innovative simulation technique called hybrid modeling that combines a detailed process‐oriented finite element (FE) simulation (submodel) with the computational efficiency of metamodel (or surrogate model). This hybrid modeling approach has three levels. In Level 1, a small scale submodel is cut out from the global model and the continuous simulations are conducted in this submodel. Level 2 deals with identification of uncertain soil parameters based on the measurements (e.g., surface settlements) during tunnel excavation. In Level 3, the tunneling process parameters (e.g., grouting pressure) can be optimized to control tunneling‐induced ground movements or building deformations according to the design criterion. The proposed hybrid modeling approach is validated via a 3D numerical simulation of mechanized tunnel excavation. The results show the capability of the proposed approach to provide reliable model responses in the near field around the tunnel with reduced computational costs.
Year
DOI
Venue
2019
10.1111/mice.12438
Periodicals
DocType
Volume
Issue
Journal
34
7
ISSN
Citations 
PageRank 
1093-9687
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Chenyang Zhao100.34
Raoul Hölter200.68
Markus König321.11
Arash Alimardani Lavasan400.68