Title
An online error calibration method for spaceflight TT&C systems based on LEO-ground DDGPS.
Abstract
To overcome the shortcomings of the traditional measurement error calibration methods for spaceflight telemetry, tracking and command (TT&C) systems, an online error calibration method based on low Earth orbit satellite-to-ground doubledifferential GPS (LEO-ground DDGPS) is proposed in this study. A fixed-interval smoother combined with a pair of forward and backward adaptive robust Kalman filters (ARKFs) is adopted to solve the LEO-ground baseline, and the ant colony optimization (ACO) algorithm is used to deal with the ambiguity resolution problem. The precise baseline solution of DDGPS is then used as a comparative reference to calibrate the systematic errors in the TT&C measurements, in which the parameters of the range error model are solved by a batch least squares algorithm. To validate the performance of the new online error calibration method, a hardware-in-the-loop simulation platform is constructed with independently developed spaceborne dual-frequency GPS receivers and a Spirent GPS signal generator. The simulation results show that with the fixed-interval smoother, a baseline estimation accuracy (RMS, single axis) of better than 10 cm is achieved. Using this DDGPS solution as the reference, the systematic error of the TT&C ranging system is effectively calibrated, and the residual systematic error is less than 5 cm.
Year
DOI
Venue
2019
10.1631/FITEE.1800308
Frontiers of Information Technology & Electronic Engineering
Keywords
Field
DocType
Spaceflight, low Earth orbit (LEO), Filter, Optimization, Calibration, TP39, V19
Residual,Control theory,Computer science,Kalman filter,Ranging,Ambiguity resolution,Global Positioning System,GPS signals,Calibration,Observational error
Journal
Volume
Issue
ISSN
20
6
2095-9184
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Qiao Wang19721.94
Xiao-jun Jin200.68
Wei Zhang311.09
Shi-ming Mo400.68
Zhaobin Xu501.35
Zhonghe Jin636.38