Title
What Differentiates Poor And Good Outcome Psychotherapy? A Statistical-Mechanics-Inspired Approach To Psychotherapy Research
Abstract
Statistical mechanics investigates how emergent properties of macroscopic systems (such as temperature and pressure) relate to microscopic state fluctuations. The underlying idea is that global statistical descriptors of order and variability can monitor the relevant dynamics of the whole system at hand. Here we test the possibility of extending such an approach to psychotherapy research investigating the possibility of predicting the outcome of psychotherapy on the sole basis of coarse-grained empirical macro-parameters. Four good-outcome and four poor-outcome brief psychotherapies were recorded, and their transcripts coded in terms of standard psychological categories (abstract, positive emotional and negative emotional language pertaining to patient and therapist). Each patient-therapist interaction is considered as a discrete multivariate time series made of subsequent word-blocks of 150-word length, defined in terms of the above categories. Static analyses (Principal Component Analysis) highlighted a substantial difference between good-outcome and poor-outcome cases in terms of mutual correlations among those descriptors. In the former, the patient's use of abstract language correlated with therapist's emotional negative language, while in the latter it co-varied with therapist's emotional positive language, thus showing the different judgment of the therapists regarding the same variable (abstract language) in poor and good outcome cases. On the other hand, the dynamic analyses, based on five coarse-grained descriptors related to variability, the degree of order and complexity of the series, demonstrated a relevant case-specific effect, pointing to the possibility of deriving a consistent picture of any single psychotherapeutic process. Overall, the results showed that the systemic approach to psychotherapy (an old tenet of psychology) is mature enough to shift from a metaphorical to a fully quantitative status.
Year
DOI
Venue
2019
10.3390/systems7020022
SYSTEMS
Keywords
Field
DocType
psychotherapy, complex systems, statistical mechanics, process of change, nonlinear dynamics
Complex system,Statistical mechanics,Computer science,Multivariate statistics,Principal component analysis,Psychotherapist
Journal
Volume
Issue
ISSN
7
2
2079-8954
Citations 
PageRank 
References 
0
0.34
0
Authors
11