Title
Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method.
Abstract
Accurate paddy rice mapping with fine spatial detail is significant for ensuring food security and maintaining sustainable environmental development. In northeastern China, rice is planted in fragmented and patchy fields and its production has reached over 10% of the total amount of rice production in China, which has brought the increasing need for updated paddy rice maps in the region. Existing methods for mapping paddy rice are often based on remote sensing techniques by using optical images. However, it is difficult to obtain high quality time series remote sensing data due to the frequent cloud cover in rice planting area and low temporal sampling frequency of satellite imagery. Therefore, paddy rice maps are often developed using few Landsat or time series MODIS images, which has limited the accuracy of paddy rice mapping. To overcome these limitations, we presented a new strategy by integrating a spatiotemporal fusion algorithm and phenology-based algorithm to map paddy rice fields. First, we applied the spatial and temporal adaptive reflectance fusion model (STARFM) to fuse the Landsat and MODIS data and obtain multi-temporal Landsat-like images. From the fused Landsat-like images and the original Landsat images, we derived time series vegetation indices (VIs) with high temporal and high spatial resolution. Then, the phenology-based algorithm, considering the unique physical features of paddy rice during the flooding and transplanting phases/open-canopy period, was used to map paddy rice fields. In order to prove the effectiveness of the proposed strategy, we compared our results with those from other three classification strategies: (1) phenology-based classification based on original Landsat images only, (2) phenology-based classification based on original MODIS images only and (3) random forest (RF) classification based on both Landsat and Landsat-like images. The validation experiments indicate that our fusion-and phenology-based strategy could improve the overall accuracy of classification by 6.07% (from 92.12% to 98.19%) compared to using Landsat data only, and 8.96% (from 89.23% to 98.19%) compared to using MODIS data, and 4.66% (from93.53% to 98.19%) compared to using the RF algorithm. The results show that our new strategy, by integrating the spatiotemporal fusion algorithm and phenology-based algorithm, can provide an effective and robust approach to map paddy rice fields in regions with limited available images, as well as the areas with patchy and fragmented fields.
Year
DOI
Venue
2019
10.3390/rs11141699
REMOTE SENSING
Keywords
Field
DocType
rice paddy,phenology-based algorithm,STARFM,time series,China
Remote sensing,China,Sensor fusion,Sowing,Geology,Phenology
Journal
Volume
Issue
Citations 
11
14
1
PageRank 
References 
Authors
0.43
0
5
Name
Order
Citations
PageRank
Qi Yin110.43
Maolin Liu221.49
Junyi Cheng320.80
Yinghai Ke4225.71
Xiuwan Chen53318.04