Title
A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert's annotations and virtual histology intravascular ultrasound.
Abstract
The detection, quantification and characterization of coronary atherosclerotic plaques has a major effect on the diagnosis and treatment of coronary artery disease (CAD). Different studies have reported and evaluated the noninvasive ability of Computed Tomography Coronary Angiography (CTCA) to identify coronary plaque features. The identification of calcified plaques (CP) and non-calcified plaques (NCP) using CTCA has been extensively studied in cardiovascular research. However, NCP detection remains a challenging problem in CTCA imaging, due to the similar intensity values of NCP compared to the perivascular tissue, which surrounds the vasculature. In this work, we present a novel methodology for the identification of the plaque burden of the coronary artery and the volumetric quantification of CP and NCP utilizing CTCA images and we compare the findings with virtual histology intravascular ultrasound (VH-IVUS) and manual expert's annotations. Bland–Altman analyses were employed to assess the agreement between the presented methodology and VH-IVUS. The assessment of the plaque volume, the lesion length and the plaque area in 18 coronary lesions indicated excellent correlation with VH-IVUS. More specifically, for the CP lesions the correlation of plaque volume, lesion length and plaque area was 0.93, 0.84 and 0.85, respectively, whereas the correlation of plaque volume, lesion length and plaque area for the NCP lesions was 0.92, 0.95 and 0.81, respectively. In addition to this, the segmentation of the lumen, CP and NCP in 1350 CTCA slices indicated that the mean value of DICE coefficient is 0.72, 0.7 and 0.62, whereas the mean HD value is 1.95, 1.74 and 1.95, for the lumen, CP and NCP, respectively.
Year
DOI
Venue
2019
10.1016/j.compbiomed.2019.103409
Computers in Biology and Medicine
Keywords
Field
DocType
Computed tomography coronary angiography,Coronary artery disease,Atherosclerotic plaque,Calcified plaque,Non-calcified plaque,Segmentation,Active contour models
Coronary artery disease,Artery,Nuclear medicine,Virtual histology intravascular ultrasound,Coronary arteries,Pattern recognition,Mean value,Lesion,Computer science,Artificial intelligence,Computed tomography,Angiography
Journal
Volume
ISSN
Citations 
113
0010-4825
0
PageRank 
References 
Authors
0.34
0
14