Title
PI Regulation of a Reaction–Diffusion Equation With Delayed Boundary Control
Abstract
The general context of this article is the feedback control of an infinite-dimensional system so that the closed-loop system satisfies a fading-memory property and achieves the setpoint tracking of a given reference signal. More specifically, this article is concerned with the proportional-integral (PI) regulation control of the left Neumann trace of a one-dimensional reaction-diffusion equation with a delayed right Dirichlet boundary control. In this setting, the studied reaction-diffusion equation might be either open-loop stable or unstable. The proposed control strategy goes as follows. First, a finite-dimensional truncated model that captures the unstable dynamics of the original infinite-dimensional system is obtained via spectral decomposition. The truncated model is then augmented by an integral component on the tracking error of the left Neumann trace. After resorting to the Artstein transformation to handle the control input delay, the PI controller is designed by pole shifting. Stability of the resulting closed-loop infinite-dimensional system, consisting of the original reaction-diffusion equation with the PI controller, is then established, thanks to an adequate Lyapunov function. In the case of a time-varying reference input and a time-varying distributed disturbance, our stability result takes the form of an exponential input-to-state stability (ISS) estimate with fading memory. Finally, another exponential ISS estimate with fading memory is established for the tracking performance of the reference signal by the system output. In particular, these results assess the setpoint regulation of the left Neumann trace in the presence of distributed perturbations that converge to a steady-state value and with a time derivative that converges to zero. Numerical simulations are carried out to illustrate the efficiency of our control strategy.
Year
DOI
Venue
2021
10.1109/TAC.2020.2996598
IEEE Transactions on Automatic Control
Keywords
DocType
Volume
Delay boundary control,Neumann trace,partial differential equations (PDEs),proportional–integral (PI) regulation control,1-D reaction–diffusion equation
Journal
66
Issue
ISSN
Citations 
4
0018-9286
2
PageRank 
References 
Authors
0.37
8
3
Name
Order
Citations
PageRank
Lhachemi, H.1228.90
Christophe Prieur21037129.96
Emmanuel Trelat383.44