Title
Lossy Mode Resonance Generation on Sputtered Aluminum-Doped Zinc Oxide Thin Films Deposited on Multimode Optical Fiber Structures for Sensing Applications in the 1.55 µm Wavelength Range.
Abstract
In this work, we demonstrated lossy mode resonance (LMR) generation in optical fiber structures based on multimode fibers coated with aluminum-doped zinc oxide (AZO) films. AZO thin films were deposited by using radio frequency magnetron sputtering. In order to exhibit the usefulness of the LMR effect for sensing applications in optical fiber based systems, the deposition conditions of the AZO film coatings were set to obtain the second LMR order within the 1.55 mu m wavelength range. An optical transmission configuration setup was used to investigate the LMR effect on fiber structures based on the use of no-core and cladding-removed multimode fibers coated with AZO films synthesized from metallic sputtering targets with different proportions of Zn:Al, 92:8% and 98:2%, at atomic concentrations. The optical and electrical/chemical features of the AZO films were characterized with UV-vis and XPS spectroscopy, respectively. The optical response of the proposed sensing configuration to refractive index (RI) variations was experimentally demonstrated. For the best approach, the sensitivity of wavelength displacement to RI variations on the liquid surrounding media was found to be 1214.7 nm/RIU.
Year
DOI
Venue
2019
10.3390/s19194189
SENSORS
Keywords
Field
DocType
lossy mode resonance,aluminum-doped zinc oxide,optical fiber sensors,multimode fiber,reactive RF magnetron sputtering
Sputtering,Optical fiber,Analytical chemistry,Fiber,Sputter deposition,Engineering,Thin film,Multi-mode optical fiber,Optoelectronics,X-ray photoelectron spectroscopy,Refractive index
Journal
Volume
Issue
ISSN
19
19
1424-8220
Citations 
PageRank 
References 
0
0.34
0
Authors
4