Title
Interference-Aware Subcarrier Allocation for Massive Machine-Type Communication in 5G-Enabled Internet of Things.
Abstract
Massive machine-type communication (mMTC) is investigated as one of three typical scenes of the 5th-generation (5G) network. In this paper, we propose a 5G-enabled internet of things (IoT) in which some enhanced mobile broadband devices transmit video stream to a centralized controller and some mMTC devices exchange short packet data with adjacent devices via D2D communication to promote inter-device cooperation. Since massive MTC devices have data transmission requirements in 5G-enabled IoT with limited spectrum resources, the subcarrier allocation problem is investigated to maximize the connectivity of mMTC devices subject to the quality of service (QoS) requirement of enhanced Mobile Broadband (eMBB) devices and mMTC devices. To solve the formulated mixed-integer non-linear programming (MINLP) problem, which is NP-hard, an interference-aware subcarrier allocation algorithm for mMTC communication (IASA) is developed to maximize the number of active mMTC devices. Finally, the performance of the proposed algorithm is evaluated by simulation. Numerical results demonstrate that the proposed algorithm outperforms the three traditional benchmark methods, which significantly improves the utilization of the uplink spectrum. This indicates that the proposed IASA algorithm provides a better solution for IoT application.
Year
DOI
Venue
2019
10.3390/s19204530
SENSORS
Keywords
Field
DocType
5G,internet of things,mMTC,eMBB
Subcarrier,Control theory,Data transmission,Network packet,Quality of service,Computer network,Electronic engineering,Interference (wave propagation),Engineering,Mobile broadband,Telecommunications link
Journal
Volume
Issue
ISSN
19
20
1424-8220
Citations 
PageRank 
References 
0
0.34
0
Authors
6
Name
Order
Citations
PageRank
Wenjun Hou100.34
Song Li21811.41
Yanjing Sun39624.77
Jiasi Zhou400.68
Xiao Yun500.34
Nannan Lu6146.24