Title
An Approximate Message Passing Algorithm For Rapid Parameter-Free Compressed Sensing MRI
Abstract
For certain sensing matrices, the Approximate Message Passing (AMP) algorithm efficiently reconstructs undersampled signals. However, in Magnetic Resonance Imaging (MRI), where Fourier coefficients of a natural image are sampled with variable density, AMP encounters convergence problems. In response we present an algorithm based on Orthogonal AMP constructed specifically for variable density partial Fourier sensing matrices. For the first time in this setting a state evolution has been observed. A practical advantage of state evolution is that Stein’s Unbiased Risk Estimate (SURE) can be effectively implemented, yielding an algorithm with no free parameters. We empirically evaluate the effectiveness of the parameter-free algorithm on simulated data and find that it converges over 5x faster and to a lower mean-squared error solution than Fast Iterative Shrinkage-Thresholding (FISTA).
Year
DOI
Venue
2020
10.1109/ICIP40778.2020.9190668
2020 IEEE International Conference on Image Processing (ICIP)
Keywords
DocType
ISSN
Approximation algorithms,Magnetic resonance imaging,Compressed sensing,Sensors,Image reconstruction,Standards,Message passing
Conference
1522-4880
ISBN
Citations 
PageRank 
978-1-7281-6395-6
1
0.36
References 
Authors
0
4
Name
Order
Citations
PageRank
Millard Charles110.36
Hess Aaron T210.36
Mailhé Boris310.36
Jared Tanner452542.48