Title
Using Long-Term SAR Backscatter Data to Monitor Post-Fire Vegetation Recovery in Tundra Environment.
Abstract
Wildfires could have a strong impact on tundra environment by combusting surface vegetation and soil organic matter. For surface vegetation, many years are required to recover to pre-fire level. In this paper, by using C-band (VV/HV polarization) and L-band (HH polarization) synthetic aperture radar (SAR) images acquired before and after fire from 2002 to 2016, we investigated vegetation change affected by the Anaktuvuk River Fire in Arctic tundra environment. Compared to the unburned areas, C- and L-band SAR backscatter coefficients increased by up to 5.5 and 4.4 dB in the severely burned areas after the fire. Then past 5 years following the fire, the C-band SAR backscatter differences decreased to pre-fire level between the burned and unburned areas, suggesting that vegetation coverage in burned sites had recovered to the unburned level. This duration is longer than the 3-year recovery suggested by optical-based Normalized Difference Vegetation Index (NDVI) observations. While for the L-band SAR backscatter after 10-year recovery, about 2 dB higher was still found in the severely burned area, compared to the unburned area. The increased roughness of the surface is probably the reason for such sustained differences. Our analysis implies that long records of space-borne SAR backscatter can monitor post-fire vegetation recovery in Arctic tundra environment and complement optical observations.
Year
DOI
Venue
2019
10.3390/rs11192230
REMOTE SENSING
Keywords
Field
DocType
arctic tundra fire,vegetation recovery,C- and L-band SAR,SAR backscatter
Tundra,Vegetation,Remote sensing,Backscatter,Geology
Journal
Volume
Issue
Citations 
11
19
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Zhiwei Zhou101.35
Lin Liu200.34
Liming Jiang333.79
Wanpeng Feng400.34
Sergey Samsonov59713.67