Title
Multi-task Localization and Segmentation for X-Ray Guided Planning in Knee Surgery
Abstract
X-ray based measurement and guidance are commonly used tools in orthopaedic surgery to facilitate a minimally invasive workflow. Typically, a surgical planning is first performed using knowledge of bone morphology and anatomical landmarks. Information about bone location then serves as a prior for registration during overlay of the planning on intra-operative X-ray images. Performing these steps manually however is prone to intra-rater/inter-rater variability and increases task complexity for the surgeon. To remedy these issues, we propose an automatic framework for planning and subsequent overlay. We evaluate it on the example of femoral drill site planning for medial patellofemoral ligament reconstruction surgery. A deep multi-task stacked hourglass network is trained on 149 conventional lateral X-ray images to jointly localize two femoral landmarks, to predict a region of interest for the posterior femoral cortex tangent line, and to perform semantic segmentation of the femur, patella, tibia, and fibula with adaptive task complexity weighting. On 38 clinical test images the framework achieves a median localization error of 1.50mm for the femoral drill site and mean IOU scores of 0.99, 0.97, 0.98, and 0.96 for the femur, patella, tibia, and fibula respectively. The demonstrated approach consistently performs surgical planning at expert-level precision without the need for manual correction.
Year
DOI
Venue
2019
10.1007/978-3-030-32226-7_69
Lecture Notes in Computer Science
Keywords
DocType
Volume
Landmark localization,Multi-label bone segmentation,MPFL,X-ray guidance,Orthopaedics,Surgical planning
Conference
11769
ISSN
Citations 
PageRank 
0302-9743
0
0.34
References 
Authors
0
9
Name
Order
Citations
PageRank
Florian Kordon113.74
Peter Fischer200.34
Maxim Privalov314.08
Benedict Swartman412.10
Marc Schnetzke521.82
J Franke610919.49
Ruxandra Lasowski721.71
Andreas K. Maier8560178.76
h j kunze901.69