Title
On The Dynamics Of Transmission Capacity And Load Loss During Cascading Failures In Power Grids
Abstract
In this paper, a novel analytical model is proposed to predict the average transmission-capacity loss and load loss during a cascading failure as a function of time and their steady state values. Cascading failures in the power grid are described using a Markov-chain approach, in which the state transition probabilities depend on the number and capacities of the failed lines. The transition matrix is characterized parametrically using Monte Carlo simulations of cascading failures in the power grid. The severity of cascading failure is estimated using two metrics: the expected number of transmission-line failures and the amount of load shedding/load loss (inferred from the average transmission capacity loss) in the steady state. These two metrics provide critical information regarding the severity of a cascading failure in a power grid (in terms of both the distribution of blackout sizes and the amounts of load shedding). One of the benefits of this model is that it enables the understanding of the effect of initial failures and of the operating parameters of the power grid on cascading failures.
Year
DOI
Venue
2019
10.1109/ISGTEurope.2019.8905451
PROCEEDINGS OF 2019 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE)
Keywords
Field
DocType
Cascading failures, load loss, average transmission capacity loss, Monte-Carlo simulations, Markov chain
Transmission (mechanics),Computer science,Cascading failure,Reliability engineering
Conference
ISSN
Citations 
PageRank 
2165-4816
0
0.34
References 
Authors
0
5
Name
Order
Citations
PageRank
Rezoan A. Shuvro100.68
Pankaz Das200.68
Mahshid Rahnamay-Naeini301.35
Francesco Sorrentino420.74
Majeed M. Hayat521326.36