Title
Performance drop at executing communication-intensive parallel algorithms
Abstract
This work summarizes the results of a set of executions completed on three fat-tree network supercomputers: Stampede at TACC (USA), Helios at IFERC (Japan) and Eagle at PSNC (Poland). Three MPI-based, communication-intensive scientific applications compiled for CPUs have been executed under weak-scaling tests: the molecular dynamics solver LAMMPS; the finite element-based mini-kernel miniFE of NERSC (USA); and the three-dimensional fast Fourier transform mini-kernel bigFFT of LLNL (USA). The design of the experiments focuses on the sensitivity of the applications to rather different patterns of task location, to assess the impact on the cluster performance. The accomplished weak-scaling tests stress the effect of the MPI-based application mappings (concentrated vs. distributed patterns of MPI tasks over the nodes) on the cluster. Results reveal that highly distributed task patterns may imply a much larger execution time in scale, when several hundreds or thousands of MPI tasks are involved in the experiments. Such a characterization serves users to carry out further, more efficient executions. Also researchers may use these experiments to improve their scalability simulators. In addition, these results are useful from the clusters administration standpoint since tasks mapping has an impact on the cluster throughput.
Year
DOI
Venue
2020
10.1007/s11227-019-03142-8
The Journal of Supercomputing
Keywords
DocType
Volume
Cluster throughput, Communication-intensive algorithms, MPI application, Weak scaling
Journal
76
Issue
ISSN
Citations 
9
1573-0484
0
PageRank 
References 
Authors
0.34
0
6