Title
Secrecy and Covert Communications Against UAV Surveillance via Multi-Hop Networks
Abstract
The deployment of unmanned aerial vehicle (UAV) for surveillance and monitoring gives rise to the confidential information leakage challenge in both civilian and military environments. The security and covert communication problems for a pair of terrestrial nodes against UAV surveillance are considered in this paper. To overcome the information leakage and increase the transmission reliability, a multi-hop relaying strategy is deployed. We aim to optimize the throughput by carefully designing the parameters of the multi-hop network, including the coding rates, transmit power, and required number of hops. In the secure transmission scenario, the expressions of the connection probability and secrecy outage probability of an end-to-end path are derived and the closed-form expressions of the optimal transmit power, transmission and secrecy rates under a fixed number of hops are obtained. In the covert communication problem, under the constraints of the detection error rate and aggregate power, the sub-problem of transmit power allocation is a convex problem and can be solved numerically. Simulation shows the impact of network settings on the transmission performance. The trade-off between secrecy/covertness and efficiency of the multi-hop transmission is discussed which leads to the existence of the optimal number of hops.
Year
DOI
Venue
2020
10.1109/TCOMM.2019.2950940
IEEE Transactions on Communications
Keywords
Field
DocType
Security,Wireless communication,Spread spectrum communication,Surveillance,Throughput,Communication system security,Atmospheric modeling
Computer science,Secrecy,Covert,Computer network,Electronic engineering,Hop (networking)
Journal
Volume
Issue
ISSN
68
1
0090-6778
Citations 
PageRank 
References 
7
0.42
0
Authors
4
Name
Order
Citations
PageRank
Huiming Wang11665103.97
Yan Zhang271.10
Xu Zhang323333.89
Zhetao Li4313.49