Title
External Deformation Monitoring and Improved Partial Least Squares Data Analysis Methods of High Core Rock-Fill Dam (HCRFD).
Abstract
External deformation monitoring of high core rock-fill dams (HCRFDs) is an important and difficult part of safety monitoring. The traditional method of external deformation monitoring and data analysis for HCRFDs is to use a total station for small angle observations and establish a regression model to analyze the results. However, the small angle method has low accuracy and a low automation degree, and there is multicollinearity between the independent variables, which affects the parameter estimation and leads to the failure of model establishment. The angle forward intersection method is adopted in this paper for observation, and an improved partial least squares method (IPLS) is proposed to eliminate the multicollinearity of the independent variables. Compared to the traditional method, the improved observation method exhibits high accuracy and a high automation degree. The new data analysis method can not only eliminate multicollinearity but also improve the interpretation ability of the model. The data from the initial stage of water storage shows that the displacement increases with the increase in the upstream water level and time, and the speed of water storage is proportional to the displacement. The water level and time are the main influencing factors. This conclusion provides a theoretical basis for reservoir management departments to control water levels and gate opening and closing. The method in this paper can be applied to arch dams, gravity dams, and other types of waterpower engineering systems.
Year
DOI
Venue
2020
10.3390/s20020444
SENSORS
Keywords
Field
DocType
angle forward intersection method,high core rock-fill dams (HCRFD),improved partial least squares method,machine learning,geodetic control network,total station
Data analysis,Regression analysis,Control theory,Deformation monitoring,Partial least squares regression,Multicollinearity,Electronic engineering,Water storage,Safety monitoring,Variables,Engineering
Journal
Volume
Issue
ISSN
20
2.0
1424-8220
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Xiang Cheng100.34
Qingquan Li21181135.06
W. Zhou331.60
Zhiwei Zhou401.35