Title
Combined Optimization Of Gripper Finger Design And Pose Estimation Processes For Advanced Industrial Assembly
Abstract
Vision systems are often used jointly with robotic manipulators to perform automated tasks in industrial applications. Still, the correct set up of such workcells is difficult and requires significant resources. One of the main challenges, when implementing such systems in industrial use cases, is the pose uncertainties presented by the vision system which have to be handled by grasping. In this paper, we present a framework for the design and analysis of optimal gripper finger designs and vision parameters. The proposed framework consists of two parallel methods which rely on vision and grasping simulation to provide an initial estimation of the uncertainty compensation capabilities of the designs. In case the compensation is not feasible with the initial design, an optimization process is introduced, to select the optimal pose estimation parameters and finger designs for the presented task. The proposed framework was evaluated in dynamic simulation and implemented in a real industrial use case.
Year
DOI
Venue
2019
10.1109/IROS40897.2019.8968081
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
Field
DocType
ISSN
Use case,Machine vision,Computer science,Control engineering,Pose,Robot manipulator,Dynamic simulation
Conference
2153-0858
Citations 
PageRank 
References 
0
0.34
0
Authors
5
Name
Order
Citations
PageRank
F. Hagelskjær111.70
Aljaz Kramberger2245.70
Adam Wolniakowski373.55
Thiusius Rajeeth Savarimuthu45813.10
Norbert Krüger531219.80