Title
Learning Interpretable Models in the Property Specification Language
Abstract
We address the problem of learning human-interpretable descriptions of a complex system from a finite set of positive and negative examples of its behavior. In contrast to most of the recent work in this area, which focuses on descriptions expressed in Linear Temporal Logic (LTL), we develop a learning algorithm for formulas in the IEEE standard temporal logic PSL (Property Specification Language). Our work is motivated by the fact that many natural properties, such as an event happening at every n-th point in time, cannot be expressed in LTL, whereas it is easy to express such properties in PSL. Moreover, formulas in PSL can be more succinct and easier to interpret (due to the use of regular expressions in PSL formulas) than formulas in LTL. Our learning algorithm builds on top of an existing algorithm for learning LTL formulas. Roughly speaking, our algorithm reduces the learning task to a constraint satisfaction problem in propositional logic and then uses a SAT solver to search for a solution in an incremental fashion. We have implemented our algorithm and performed a comparative study between the proposed method and the existing LTL learning algorithm. Our results illustrate the effectiveness of the proposed approach to provide succinct human-interpretable descriptions from examples.
Year
DOI
Venue
2020
10.24963/ijcai.2020/306
IJCAI 2020
DocType
Citations 
PageRank 
Conference
2
0.39
References 
Authors
0
3
Name
Order
Citations
PageRank
Roy Rajarshi120.73
Dana Fisman218620.98
Daniel Neider315321.97