Title
Non-Equilibrium Quantum Electrodynamics in Open Systems as a Realizable Representation of Quantum Field Theory of the Brain.
Abstract
We derive time evolution equations, namely the Klein-Gordon equations for coherent fields and the Kadanoff-Baym equations in quantum electrodynamics (QED) for open systems (with a central region and two reservoirs) as a practical model of quantum field theory of the brain. Next, we introduce a kinetic entropy current and show the H-theorem in the Hartree-Fock approximation with the leading-order (LO) tunneling variable expansion in the 1st order approximation for the gradient expansion. Finally, we find the total conserved energy and the potential energy for time evolution equations in a spatially homogeneous system. We derive the Josephson current due to quantum tunneling between neighbouring regions by starting with the two-particle irreducible effective action technique. As an example of potential applications, we can analyze microtubules coupled to a water battery surrounded by a biochemical energy supply. Our approach can be also applied to the information transfer between two coherent regions via microtubules or that in networks (the central region and the Nres reservoirs) with the presence of quantum tunneling.
Year
DOI
Venue
2020
10.3390/e22010043
ENTROPY
Keywords
Field
DocType
non-equilibrium quantum field theory,open systems,quantum electrodynamics,brain dynamics
Quantum tunnelling,Quantum electrodynamics,Quantum field theory,Homogeneous,Time evolution,Potential energy,Open system (systems theory),Mathematics,Kinetic energy,Effective action
Journal
Volume
Issue
ISSN
22
1
1099-4300
Citations 
PageRank 
References 
0
0.34
0
Authors
3
Name
Order
Citations
PageRank
Akihiro Nishiyama100.68
Shigenori Tanaka2219.76
Jack A. Tuszynski33211.45