Title
VOM: Flow-Path Validation and Control-Sequence Optimization for Multilayered Continuous-Flow Microfluidic Biochips
Abstract
Multilayered valve-based continuous-flow microfluidic biochips are a rapidly developing platform for delicate bio-applications. Due to the high complexity of the biochip structure and the application protocols, there is an increasing demand for design automation approaches. Current research has enabled automated generation of biochip physical designs, operation scheduling, and binding protocols, which has demonstrated the potential for better resource utilization and execution time reduction. However, the state-of-the-art high-level synthesis methods are on operation- and device-level. They assume fluid transportation paths to be always available but overlook the physical layout of the control and flow channels. This mismatch leads to a gap in the complete synthesis flow, and can result in performance drop, waste of resources due to redundancy or even infeasible designs. This work proposes to bridge this gap with a simulation-based approach, which takes a biochip design and a high-level protocol as inputs, and synthesizes channel-level pressurization protocols to support dynamic construction of valid fluid transportation paths. Experimental results show that the proposed method can efficiently validate and optimize the flow paths for feasible designs and protocols, detect redundant resource usage, and locate the conflicts for infeasible designs and protocols. It opens up a new direction to improve the performance and the feasibility of customized biochip synthesis.
Year
DOI
Venue
2019
10.1109/ICCAD45719.2019.8942066
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
Keywords
Field
DocType
high-level synthesis methods,channel-level pressurization protocols,fluid transportation paths,biochip synthesis,multilayered valve-based continuous-flow microfluidic biochips,application protocols,biochip structure,bioapplications,redundant resource usage,flow paths,high-level protocol,biochip design,synthesis flow,flow channels,execution time reduction,resource utilization,binding protocols,operation scheduling,biochip physical designs
Biochip,Computer science,Continuous flow,Flow (psychology),Microfluidics,Communication channel,Real-time computing,Redundancy (engineering),Electronic design automation,Sequence optimization,Embedded system
Conference
ISSN
ISBN
Citations 
1933-7760
978-1-7281-2351-6
1
PageRank 
References 
Authors
0.37
12
5
Name
Order
Citations
PageRank
Mengchu Li1375.65
Tsun-Ming Tseng27411.12
Yanlu Ma310.37
Tsung-Yi Ho45921.63
U. Schlichtmann514614.94