Title
Integrating Relation Constraints With Neural Relation Extractors
Abstract
Recent years have seen rapid progress in identifying predefined relationship between entity pairs using neural networks (NNs). However, such models often make predictions for each entity pair individually, thus often fail to solve the inconsistency among different predictions, which can be characterized by discrete relation constraints. These constraints are often defined over combinations of entity-relation-entity triples, since there often lack of explicitly well-defined type and cardinality requirements for the relations. In this paper, we propose a unified framework to integrate relation constraints with NNs by introducing a new loss term, Constraint Loss. Particularly, we develop two efficient methods to capture how well the local predictions from multiple instance pairs satisfy the relation constraints. Experiments on both English and Chinese datasets show that our approach can help NNs learn from discrete relation constraints to reduce inconsistency among local predictions, and outperform popular neural relation extraction (NRE) models even enhanced with extra post-processing. Our source code and datasets will be released at https://github.com/PKUYeYuan/Constraint-Loss-AAAI-2020.
Year
Venue
DocType
2020
national conference on artificial intelligence
Conference
Volume
ISSN
Citations 
34
2159-5399
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Yuan Ye131.53
Yansong Feng273564.17
Bingfeng Luo3194.80
Yuxuan Lai422.39
Dongyan Zhao599896.35