Title
Exploring Randomly Wired Neural Networks For Image Recognition
Abstract
Neural networks for image recognition have evolved through extensive manual design from simple chain-like models to structures with multiple wiring paths. The success of ResNets [12] and DenseNets [17] is due in large part to their innovative wiring plans. Now, neural architecture search (NAS) studies are exploring the joint optimization of wiring and operation types, however, the space of possible wirings is constrained and still driven by manual design despite being searched. In this paper, we explore a more diverse set of connectivity patterns through the lens of randomly wired neural networks. To do this, we first define the concept of a stochastic network generator that encapsulates the entire network generation process. Encapsulation provides a unified view of NAS and randomly wired networks. Then, we use three classical random graph models to generate randomly wired graphs for networks. The results are surprising: several variants of these random generators yield network instances that have competitive accuracy on the ImageNet benchmark. These results suggest that new efforts focusing on designing better network generators may lead to new breakthroughs by exploring less constrained search spaces with more room for novel design. The code is publicly available online.
Year
DOI
Venue
2019
10.1109/ICCV.2019.00137
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019)
DocType
Volume
Issue
Conference
2019
1
ISSN
Citations 
PageRank 
1550-5499
9
0.61
References 
Authors
0
4
Name
Order
Citations
PageRank
Saining Xie123112.45
Alexander Kirillov2926.23
Ross B. Girshick321921927.22
Kaiming He421469696.72