Title
More on the Minimum and Stopping Distances of RS-LDPC Codes
Abstract
Based on the extended Reed-Solomon (RS) code that has two information symbols over the field <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathbb F}_{q}$ </tex-math></inline-formula> , we can construct a binary regular matrix <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${ {\boldsymbol{\textstyle H}}}(\gamma,\rho)$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q:=2^{r}$ </tex-math></inline-formula> for some positive integer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma $ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> are two positive integers such that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma \le q$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho \le q$ </tex-math></inline-formula> . The matrix <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${ {\boldsymbol{\textstyle H}}}(\gamma,\rho)$ </tex-math></inline-formula> specifies a low-density parity-check (LDPC) code <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathcal C}(\gamma,\rho)$ </tex-math></inline-formula> , called an RS-LDPC code. In this letter, we provide more results on the minimum distance and stopping distance of this class of codes (denoted by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d({\mathcal C}(\gamma,\rho))$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s({ {\boldsymbol{\textstyle H}}}(\gamma,\rho))$ </tex-math></inline-formula> ) for the case <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\gamma =6$ </tex-math></inline-formula> . For <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho =q$ </tex-math></inline-formula> , we derive an upper bound on <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s({ {\boldsymbol{\textstyle H}}}(6,q))$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d(\mathcal {C}(6,q))$ </tex-math></inline-formula> , which is conjectured to be tight for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q\ge 32$ </tex-math></inline-formula> . For <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho &lt; q$ </tex-math></inline-formula> , we investigate the choices of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\rho $ </tex-math></inline-formula> such that <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d(\mathcal {C}(6,\rho))$ </tex-math></inline-formula> (resp., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s({ {\boldsymbol{\textstyle H}}}(6,\rho))$ </tex-math></inline-formula> ) can be improved compared with the original <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$d(\mathcal {C}(6,q))$ </tex-math></inline-formula> (resp., <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s({ {\boldsymbol{\textstyle H}}}(6,q))$ </tex-math></inline-formula> ).
Year
DOI
Venue
2020
10.1109/LCOMM.2019.2957802
IEEE Communications Letters
Keywords
DocType
Volume
Upper bound,Linear codes,Signal to noise ratio,Generators,Indexes,Iterative decoding
Journal
24
Issue
ISSN
Citations 
3
1089-7798
0
PageRank 
References 
Authors
0.34
0
2
Name
Order
Citations
PageRank
Haiyang Liu12810.84
Xiaopeng Jiao201.01