Title
Closed-Loop Matters: Dual Regression Networks For Single Image Super-Resolution
Abstract
Deep neural networks have exhibited promising performance in image super-resolution (SR) by learning a non-linear mapping function from low-resolution (LR) images to high-resolution (HR) images. However, there are two underlying limitations to existing SR methods. First, learning the mapping fitnction from LR to HR images is typically an ill-posed problem, because there exist infinite HR images that can be downsampled to the same LR image. As a result, the space of the possible functions can be extremely large, which makes it hard to find a good solution. Second, the paired LR-HR data may be unavailable in real-world applications and the underlying degradation method is often unknown. For such a more general case, existing SR models often incur the adaptation problem and yield poor performance. To address the above issues, we propose a dual regression scheme by introducing an additional constraint on LI? data to reduce the space of the possible functions. Specifically, besides the mapping from LI? to HR images, we learn an additional dual regression mapping estimates the down-sampling kernel and reconstruct LI? images, which forms a closed-loop to provide additional supervision. More critically, since the dual regression process does not depend on HR images, we can directly learn from LR images. In this sense, we can easily adapt SR models to real-world data, e.g., raw video frames from Yotaltbe. Extensive experiments with paired training data and unpaired real-world data demonstrate our superiority over existing methods.
Year
DOI
Venue
2020
10.1109/CVPR42600.2020.00545
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
DocType
ISSN
Citations 
Conference
1063-6919
6
PageRank 
References 
Authors
0.40
31
8
Name
Order
Citations
PageRank
Yong Guo1455.94
Jian Chen2428.66
Jingdong Wang34198156.76
Qi Chen4183.24
Jiezhang Cao5164.30
Deng Zeshuai660.40
Yanwu Xu7566.59
Rui Tang818819.22