Title
Coding Over Sets for DNA Storage
Abstract
In this paper we study error-correcting codes for the storage of data in synthetic deoxyribonucleic acid (DNA). We investigate a storage model where a data set is represented by an unordered set of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> sequences, each of length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> . Errors within that model are a loss of whole sequences and point errors inside the sequences, such as insertions, deletions and substitutions. We derive Gilbert-Varshamov lower bounds and sphere packing upper bounds on achievable cardinalities of error-correcting codes within this storage model. We further propose explicit code constructions than can correct errors in such a storage system that can be encoded and decoded efficiently. Comparing the sizes of these codes to the upper bounds, we show that many of the constructions are close to optimal.
Year
DOI
Venue
2020
10.1109/TIT.2019.2961265
IEEE Transactions on Information Theory
Keywords
Field
DocType
Coding over sets,DNA data storage,Gilbert-Varshamov bound,insertion and deletion errors,sphere packing bound
Computer science,Coding (social sciences),DNA,Computational biology
Journal
Volume
Issue
ISSN
66
4
0018-9448
Citations 
PageRank 
References 
6
0.59
0
Authors
4
Name
Order
Citations
PageRank
Andreas Lenz1215.73
Paul H. Siegel21142105.90
Antonia Wachter-Zeh312933.65
Eitan Yaakobi460470.41