Title
Cakes: Channel-Wise Automatic Kernel Shrinking For Efficient 3d Networks
Abstract
3D Convolution Neural Networks (CNNs) have been widely applied to 3D scene understanding, such as video analysis and volumetric image recognition. However, 3D networks can easily lead to over-parameterization which incurs expensive computation cost. In this paper, we propose Channel-wise Automatic KErnel Shrinking (CAKES), to enable efficient 3D learning by shrinking standard 3D convolutions into a set of economic operations (e.g., 1D, 2D convolutions). Unlike previous methods, CAKES performs channel-wise kernel shrinkage, which enjoys the following benefits: 1) enabling operations deployed in every layer to be heterogeneous, so that they can extract diverse and complementary information to benefit the learning process; and 2) allowing for an efficient and flexible replacement design, which can be generalized to both spatial-temporal and volumetric data. Further, we propose a new search space based on CAKES, so that the replacement configuration can be determined automatically for simplifying 3D networks. CAKES shows superior performance to other methods with similar model size, and it also achieves comparable performance to state-of-the-art with much fewer parameters and computational costs on tasks including 3D medical imaging segmentation and video action recognition. Codes and models are available at https://github.com/yucornetto/CAKES.
Year
Venue
DocType
2021
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
Conference
Volume
ISSN
Citations 
35
2159-5399
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Qihang Yu184.21
Yingwei Li276.35
Jieru Mei312.05
Yuyin Zhou49710.94
Alan L. Yuille5103391902.01