Title
Coding Performance Modeling For Short-Packet Communications
Abstract
In this paper, an analytic model is developed to predict the performance of modern error correcting codes and modulation schemes over wireless channels with non-ideal channel estimation. The model is based on recent advances in finite-blocklength information theory, which provide accurate performance metrics for the transmission of short packets. We extend the finite-blocklength analysis to the more practical communication scenarios in 5G New Radio (NR) by modeling the impact of real-world modulation and demoulation, bit-interleaving, orthogonal frequency-division multiplexing (OFDM), and the time/frequency selective fading. Our model is also based on new analytic methods to model the performance loss of channel decoding due to channel estimation errors (also known as imperfect channel state information (CSI)). Link-level simulation results demonstrate that the proposed model have accuracy within a few tenths of a dB under a wide range of communication parameters.
Year
DOI
Venue
2019
10.1109/IEEECONF44664.2019.9049004
CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS
Keywords
DocType
ISSN
Bit-interleaved coded modulation (BICM), finite-blocklength information theory, imperfect CSI, link-level performance modeling, short-packet communications, ultra-reliable low-latency communications (URLLC)
Conference
1058-6393
Citations 
PageRank 
References 
0
0.34
0
Authors
5
Name
Order
Citations
PageRank
Wei Yang100.34
Ying Wang200.34
Joseph Soriaga300.34
Tingfang Ji400.34
Kiran Mukkavilli500.34