Title
Policy-Gradient Algorithms Have No Guarantees of Convergence in Linear Quadratic Games
Abstract
We show by counterexample that policy-gradient algorithms have no guarantees of even local convergence to Nash equilibria in continuous action and state space multi-agent settings. To do so, we analyze gradient-play in N-player general-sum linear quadratic games, a classic game setting which is recently emerging as a benchmark in the field of multi-agent learning. In such games the state and action spaces are continuous and global Nash equilibria can be found be solving coupled Ricatti equations. Further, gradient-play in LQ games is equivalent to multi-agent policy-gradient. We first show that these games are surprisingly not convex games. Despite this, we are still able to show that the only critical points of the gradient dynamics are global Nash equilibria. We then give sufficient conditions under which policy-gradient will avoid the Nash equilibria, and generate a large number of general-sum linear quadratic games that satisfy these conditions. The existence of such games indicates that one of the most popular approaches to solving reinforcement learning problems in the classic reinforcement learning setting has no local guarantee of convergence in multi-agent settings. Further, the ease with which we can generate these counterexamples suggests that such situations are not mere edge cases and are in fact quite common.
Year
DOI
Venue
2020
10.5555/3398761.3398862
AAMAS '19: International Conference on Autonomous Agents and Multiagent Systems Auckland New Zealand May, 2020
DocType
ISBN
Citations 
Conference
978-1-4503-7518-4
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Eric Mazumdar1137.50
Lillian J. Ratliff28723.32
Michael I. Jordan3312203640.80
Shankar Sastry4119771291.58