Title
MetaSDF: Meta-learning Signed Distance Functions
Abstract
Neural implicit shape representations are an emerging paradigm that offers many potential benefits over conventional discrete representations, including memory efficiency at a high spatial resolution. Generalizing across shapes with such neural implicit representations amounts to learning priors over the respective function space and enables geometry reconstruction from partial or noisy observations. Existing generalization methods rely on conditioning a neural network on a low-dimensional latent code that is either regressed by an encoder or jointly optimized in the auto-decoder framework. Here, we formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task. We demonstrate that this approach performs on par with auto-decoder based approaches while being an order of magnitude faster at test-time inference. We further demonstrate that the proposed gradient-based method outperforms encoder-decoder based methods that leverage pooling-based set encoders.
Year
Venue
DocType
2020
NIPS 2020
Conference
Volume
Citations 
PageRank 
33
0
0.34
References 
Authors
0
5
Name
Order
Citations
PageRank
Vincent Sitzmann11319.36
Eric R. Chan211.06
Richard Tucker3755.97
Noah Snavely44262197.04
Gordon Wetzstein594572.47