Title
Uncertainties in CERES Top-of-Atmosphere Fluxes Caused by Changes in Accompanying Imager.
Abstract
The Clouds and the Earth's Radiant Energy System (CERES) project provides observations of Earth's radiation budget using measurements from CERES instruments on board the Terra, Aqua, Suomi National Polar-orbiting Partnership (S-NPP), and NOAA-20 satellites. The CERES top-of-atmosphere (TOA) fluxes are produced by converting radiance measurements using empirical angular distribution models, which are functions of cloud properties that are retrieved from imagers flying with the CERES instruments. As the objective is to create a long-term climate data record, not only calibration consistency of the six CERES instruments needs to be maintained for the entire time period, it is also important to maintain the consistency of other input data sets used to produce this climate data record. In this paper, we address aspects that could potentially affect the CERES TOA flux data quality. Discontinuities in imager calibration can affect cloud retrieval which can lead to erroneous flux trends. When imposing an artificial 0.6 per decade decreasing trend to cloud optical depth, which is similar to the trend difference between CERES Edition 2 and Edition 4 cloud retrievals, the decadal SW flux trend changed from-0.35 +/- 0.18 Wm(-2) to 0.61 +/- 0.18 Wm(-2). This indicates that a 13% change in cloud optical depth results in about 1% change in the SW flux. Furthermore, different CERES instruments provide valid fluxes at different viewing zenith angle ranges, and including fluxes derived at the most oblique angels unique to S-NPP (>66 degrees) can lead to differences of 0.8 Wm(-2) and 0.3 Wm(-2) in global monthly mean instantaneous SW flux and LW flux. To ensure continuity, the viewing zenith angle ranges common to all CERES instruments (>66 degrees) are used to produce the long-term Earth's radiation budget climate data record. The consistency of cloud properties retrieved from different imagers also needs to be maintained to ensure the TOA flux consistency.
Year
DOI
Venue
2020
10.3390/rs12122040
REMOTE SENSING
Keywords
DocType
Volume
Earth's radiation budget,climate data record,cloud properties,angular distribution model
Journal
12
Issue
Citations 
PageRank 
12
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Wenying Su101.35
Lusheng Liang200.34
Hailan Wang300.34
Zachary A. Eitzen400.34