Title
Quasi-Optimal Sampling To Learn Basis Updates For Online Adaptive Model Reduction With Adaptive Empirical Interpolation
Abstract
Traditional model reduction derives reduced models from large-scale systems in a one-time computationally expensive offline (training) phase and then evaluates reduced models in an online phase to rapidly predict system outputs; however, this offline/online splitting means that reduced models can be expected to faithfully predict outputs only for system behavior that has been incorporated into the reduced models during the offline phase. This work considers model reduction with the online adaptive empirical interpolation method (AADEIM) that adapts reduced models in the online phase to system behavior that was not anticipated in the offline phase by deriving updates from a few samples of the states of the large-scale systems. The contribution of this work is an analysis of the AADEIM sampling strategy for deciding which parts of the large-scale states to sample to learn reduced-model updates. The analysis shows that the AADEIM sampling strategy is optimal up to a factor 2. Numerical results demonstrate the theoretical results by comparing the quasi-optimal AADEIM sampling strategy to other sampling strategies on various examples.
Year
DOI
Venue
2020
10.23919/ACC45564.2020.9147832
2020 AMERICAN CONTROL CONFERENCE (ACC)
DocType
ISSN
Citations 
Conference
0743-1619
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Alice Cortinovis100.34
Daniel Kressner244948.01
Stefano Massei363.15
Benjamin Peherstorfer400.34