Title
Energy-efficient control adaptation with safety guarantees for learning-enabled cyber-physical systems
Abstract
ABSTRACTNeural networks have been increasingly applied to control in learning-enabled cyber-physical systems (LE-CPSs) and demonstrated great promises in improving system performance and efficiency, as well as reducing the need for complex physical models. However, the lack of safety guarantees for such neural network based controllers has significantly impeded their adoption in safety-critical CPSs. In this work, we propose a controller adaptation approach that automatically switches among multiple controllers, including neural network controllers, to guarantee system safety and improve energy efficiency. Our approach includes two key components based on formal methods and machine learning. First, we approximate each controller with a Bernstein-polynomial based hybrid system model under bounded disturbance, and compute a safe invariant set for each controller based on its corresponding hybrid system. Intuitively, the invariant set of a controller defines the state space where the system can always remain safe under its control. The union of the controllers' invariants sets then define a safe adaptation space that is larger than (or equal to) that of each controller. Second, we develop a deep reinforcement learning method to learn a controller switching strategy for reducing the control/actuation energy cost, while with the help of a safety guard rule, ensuring that the system stays within the safe space. Experiments on a linear adaptive cruise control system and a non-linear Van der Pol's oscillator demonstrate the effectiveness of our approach on energy saving and safety enhancement.
Year
DOI
Venue
2020
10.1145/3400302.3415676
ICCAD
DocType
Citations 
PageRank 
Conference
1
0.37
References 
Authors
0
3
Name
Order
Citations
PageRank
Yixuan Wang132.45
Chao Huang210330.94
Qi Zhu385.55