Title
Learning to Simulate Human Mobility
Abstract
Realistic simulation of a massive amount of human mobility data is of great use in epidemic spreading modeling and related health policy-making. Existing solutions for mobility simulation can be classified into two categories: model-based methods and model-free methods, which are both limited in generating high-quality mobility data due to the complicated transitions and complex regularities in human mobility. To solve this problem, we propose a model-free generative adversarial framework, which effectively integrates the domain knowledge of human mobility regularity utilized in the model-based methods. In the proposed framework, we design a novel self-attention based sequential modeling network as the generator to capture the complicated temporal transitions in human mobility. To augment the learning power of the generator with the advantages of model-based methods, we design an attention-based region network to introduce the prior knowledge of urban structure to generate a meaningful trajectory. As for the discriminator, we design a mobility regularity-aware loss to distinguish the generated trajectory. Finally, we utilize the mobility regularities of spatial continuity and temporal periodicity to pre-train the generator and discriminator to further accelerate the learning procedure. Extensive experiments on two real-life mobility datasets demonstrate that our framework outperforms seven state-of-the-art baselines significantly in terms of improving the quality of simulated mobility data by 35%. Furthermore, in the simulated spreading of COVID-19, synthetic data from our framework reduces MAPE from 5% ~ 10% (baseline performance) to 2%.
Year
DOI
Venue
2020
10.1145/3394486.3412862
KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining Virtual Event CA USA July, 2020
DocType
ISBN
Citations 
Conference
978-1-4503-7998-4
3
PageRank 
References 
Authors
0.45
0
6
Name
Order
Citations
PageRank
Jie Feng151.82
Zeyu Yang2131.97
Fengli Xu316619.72
Haisu Yu440.81
Mudan Wang531.13
Yong Li6237.93