Title
Physiological Artefacts and the Implications for Brain-Machine-Interface Design
Abstract
The accurate measurement of brain activity by Brain-Machine-Interfaces (BMI) and closed-loop Deep Brain Stimulators (DBS) is one of the most important steps in communicating between the brain and subsequent processing blocks. In conventional chest-mounted systems, frequently used in DBS, a significant amount of artifact can be induced in the sensing interface, often as a common-mode signal applied between the case and the sensing electrodes. Attenuating this common-mode signal can be a serious challenge in these systems due to finite commonmode-rejection-ratio (CMRR) capability in the interface. Emerging BMI and DBS devices are being developed which can mount on the skull. Mounting the system on the cranial region can potentially suppress these induced physiological signals by limiting the artifact amplitude. In this study, we model the effect of artifacts by focusing on cardiac activity, using a current-source dipole model in a torso-shaped volume conductor. Performing finite element simulation with the different DBS architectures, we estimate the ECG common mode artifacts for several device architectures. Using this model helps define the overall requirements for the total system CMRR to maintain resolution of brain activity. The results of the simulations estimate that the cardiac artifacts for skull-mounted systems will have a significantly lower effect than non-cranial systems that include the pectoral region. It is expected that with a pectoral mounted device, a minimum of 60-80 dB CMRR is required to suppress the ECG artifact, while in cranially-mounted devices, a 20 dB CMRR is sufficient, in the worst-case scenario. The methods used for estimating cardiac artifacts can be extended to other sources such as motion/muscle sources. The susceptibility of the device to artifacts has significant implications for the practical translation of closed-loop DBS and BMI, including the choice of biomarkers and the design requirements for insulators and lead systems.
Year
DOI
Venue
2020
10.1109/SMC42975.2020.9283328
SMC
Keywords
DocType
Volume
Deep brain stimulation,Cranial mounted DBS,ECG artifact,Current- source dipole model,Finite element method
Conference
2020
ISSN
Citations 
PageRank 
1062-922X
0
0.34
References 
Authors
0
4
Name
Order
Citations
PageRank
Majid Memarian Sorkhabi100.68
Moaad Benjaber201.01
Peter Brown3275.71
T. Denison47023.36