Title
Diffusion Kurtosis Imaging Reveals Optic Tract Damage That Correlates With Clinical Severity In Glaucoma
Abstract
Glaucoma is a neurodegenerative disease of the visual system and is the leading cause of irreversible blindness worldwide. To date, its pathophysiological mechanisms remain unclear. This study evaluated the feasibility of advanced diffusion magnetic resonance imaging techniques for examining the microstructural environment of the visual pathway in glaucoma. While conventional diffusion tensor imaging (DTI) showed lower fractional anisotropy and higher directional diffusivities in the optic tracts of glaucoma patients than healthy controls, diffusion kurtosis imaging (DKI) and the extended white matter tract integrity (WMTI) model indicated lower radial kurtosis, higher axial and radial diffusivities in the extra-axonal space, lower axonal water fraction, and lower tortuosity in the same regions in glaucoma patients. These findings suggest glial involvements apart from compromised axonal integrity in glaucoma. In addition, DKI and WMTI but not DTI parameters significantly correlated with clinical ophthalmic measures via optical coherence tomography and visual field perimetry testing. Taken together, DKI and WMTI provided sensitive and comprehensive imaging biomarkers for quantifying glaucomatous damage in the white matter tract across clinical severity complementary to DTI.
Year
DOI
Venue
2020
10.1109/EMBC44109.2020.9176192
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20
DocType
Volume
ISSN
Conference
2020
1557-170X
Citations 
PageRank 
References 
0
0.34
0
Authors
7
Name
Order
Citations
PageRank
Zhe Sun100.34
Carlos Parra200.34
Ji Won Bang300.68
Els Fieremans400.34
Wollstein Gadi520.74
Joel S Schuman6638.75
Kevin C. Chan711511.92