Title
Modeling Muscle Synergies As A Gaussian Process: Estimating Unmeasured Muscle Excitations Using A Measured Subset
Abstract
Continuous observation of muscle activity could provide a comprehensive picture of the loads experienced by muscles and joints during daily life. However, a major limitation to the practical application of this approach is the need to have surface electromyography (sEMG) sensors on all involved muscles. In this work, we model the synergistic relationship between muscles as a Gaussian process enabling the inference of unmeasured muscle excitations using a subset of measured data. Specifically, we developed a model for a single subject which uses sEMG data from four leg muscles to estimate the muscle excitation time-series of six other leg muscles during level walking at a self-selected speed. The proposed technique was able to accurately estimate the held-out muscle excitation time-series of the six muscles with correlation coefficients ranging from 0.74 to 0.87 and with mean absolute error less than 3%.
Year
DOI
Venue
2020
10.1109/EMBC44109.2020.9176232
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20
DocType
Volume
ISSN
Conference
2020
1557-170X
Citations 
PageRank 
References 
0
0.34
0
Authors
3
Name
Order
Citations
PageRank
Reed D Gurchiek152.15
Anna T Ursiny220.74
ryan s mcginnis3175.85