Title
Scalable Graph Neural Networks via Bidirectional Propagation
Abstract
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Year
Venue
DocType
2020
NIPS 2020
Conference
Volume
Citations 
PageRank 
33
0
0.34
References 
Authors
0
7
Name
Order
Citations
PageRank
Ming Chen140.72
Zhewei Wei221520.07
Bolin Ding3157885.48
yaliang li462950.87
Ye Yuan511724.40
Xiaoyong Du6882123.29
Ji-Rong Wen74431265.98