Title
Optimal Submarine Cable Path Planning and Trunk-and-Branch Tree Network Topology Design
Abstract
We study the path planning of submarine cable systems with trunk-and-branch tree topology on the surface of the earth. Existing work on path planning represents the earth's surface by triangulated manifolds and takes account of laying cost of the cable including material, labor, alternative protection levels, terrain slope and survivability of the cable. Survivability issues include the risk of future cable break associated with laying the cable through sensitive and risky areas, such as, in particular, earthquake-prone regions. The key novelty of this paper is an examination and solution of the path planning of submarine cable systems with trunk-and-branch tree topology. We formulate the problem as a Steiner minimal tree problem on irregular 2D manifolds in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . For a given Steiner topology, we propose a polynomial time computational complexity numerical method based on the dynamic programming principle. If the topology is unknown, a branch and bound algorithm is adopted. Simulations are performed on real-world three-dimensional geographical data.
Year
DOI
Venue
2020
10.1109/TNET.2020.2988047
IEEE/ACM Transactions on Networking
Keywords
DocType
Volume
Optical fiber cables,path optimization,Steiner minimal tree,cost effectiveness,seismic resilience,manifolds
Journal
28
Issue
ISSN
Citations 
4
1063-6692
0
PageRank 
References 
Authors
0.34
0
4
Name
Order
Citations
PageRank
Zengfu Wang1113385.70
Qing Wang234576.64
B. Moran311121.09
Moshe Zukerman41660175.61