Title
Strong Menger Connectedness of Augmented k-ary n-cubes
Abstract
A connected graph <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G$</tex> is called strongly Menger (edge) connected if for any two distinct vertices <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$x,y$</tex> of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G$</tex> , there are <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\min \{\textrm{deg}_G(x), \textrm{deg}_G(y)\}$</tex> internally disjoint (edge disjoint) paths between <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$x$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$y$</tex> . Motivated by parallel routing in networks with faults, Oh and Chen (resp., Qiao and Yang) proposed the (fault-tolerant) strong Menger (edge) connectivity as follows. A graph <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G$</tex> is called <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$m$</tex> -strongly Menger (edge) connected if <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G-F$</tex> remains strongly Menger (edge) connected for an arbitrary vertex set <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$F\subseteq V(G)$</tex> (resp. edge set <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$F\subseteq E(G)$</tex> ) with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$|F|\leq m$</tex> . A graph <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G$</tex> is called <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$m$</tex> -conditional strongly Menger (edge) connected if <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$G-F$</tex> remains strongly Menger (edge) connected for an arbitrary vertex set <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$F\subseteq V(G)$</tex> (resp. edge set <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$F\subseteq E(G)$</tex> ) with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$|F|\leq m$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\delta (G-F)\geq 2$</tex> . In this paper, we consider strong Menger (edge) connectedness of the augmented <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$k$</tex> -ary <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> -cube <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,k}$</tex> , which is a variant of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$k$</tex> -ary <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> -cube <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Q_n^k$</tex> . By exploring the topological proprieties of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,k}$</tex> , we show that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,3}$</tex> (resp. <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,k}$</tex> , <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$k\geq 4$</tex> ) is <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$(4n-9)$</tex> -strongly (resp. <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$(4n-8)$</tex> -strongly) Menger connected for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n\geq 4$</tex> (resp. <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n\geq 2$</tex> ) and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,k}$</tex> is <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$(4n-4)$</tex> -strongly Menger edge connected for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n\geq 2$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$k\geq 3$</tex> . Moreover, we obtain that <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$AQ_{n,k}$</tex> is <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$(8n-10)$</tex> -conditional strongly Menger edge connected for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n\geq 2$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$k\geq 3$</tex> . These results are all optimal in the sense of the maximum number of tolerated vertex (resp. edge) faults.
Year
DOI
Venue
2021
10.1093/comjnl/bxaa037
The Computer Journal
Keywords
DocType
Volume
Strong Menger edge connectivity,maximal local-connectivity,augmented k-ary n-cubes,fault-tolerance
Journal
64
Issue
ISSN
Citations 
1
0010-4620
0
PageRank 
References 
Authors
0.34
16
3
Name
Order
Citations
PageRank
Mei-Mei Gu13710.45
Jou-Ming Chang254650.92
Rongxia Hao316526.11