Title
Introduction Of A Semg Sensor System For Autonomous Use By Inexperienced Users
Abstract
Wearable devices play an increasing role in the rehabilitation of patients with movement disorders. Although information about muscular activation is highly interesting, no approach exists that allows reliable collection of this information when the sensor is applied autonomously by the patient. This paper aims to demonstrate the proof-of-principle of an innovative sEMG sensor system, which can be used intuitively by patients while detecting their muscular activation with sufficient accuracy. The sEMG sensor system utilizes a multichannel approach based on 16 sEMG leads arranged circularly around the limb. Its design enables a stable contact between the skin surface and the system's dry electrodes, fulfills the SENIAM recommendations regarding the electrode size and inter-electrode distance and facilitates a high temporal resolution. The proof-of-principle was demonstrated by elbow flexion/extension movements of 10 subjects, proving that it has root mean square values and a signal-to-noise ratio comparable to commercial systems based on pre-gelled electrodes. Furthermore, it can be easily placed and removed by patients with reduced arm function and without detailed knowledge about the exact positioning of the sEMG electrodes. With its features, the demonstration of the sEMG sensor system's proof-of-principle positions it as a wearable device that has the potential to monitor muscular activation in home and community settings.
Year
DOI
Venue
2020
10.3390/s20247348
SENSORS
Keywords
DocType
Volume
surface electromyography, sensor system, dry electrodes, wearable device, monitoring, rehabilitation, dynamic contractions, activities of daily life, usability
Journal
20
Issue
ISSN
Citations 
24
1424-8220
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Elisa Romero Avila100.34
Elmar Junker200.34
Catherine Disselhorst-Klug382.62