Title
Binaural Heterophasic Superdirective Beamforming
Abstract
The superdirective beamformer, while attractive for processing broadband acoustic signals, often suffers from the problem of white noise amplification. So, its application requires well-designed acoustic arrays with sensors of extremely low self-noise level, which is difficult if not impossible to attain. In this paper, a new binaural superdirective beamformer is proposed, which is divided into two sub-beamformers. Based on studies and facts in psychoacoustics, these two filters are designed in such a way that they are orthogonal to each other to make the white noise components in the binaural beamforming outputs incoherent while maximizing the output interaural coherence of the diffuse noise, which is important for the brain to localize the sound source of interest. As a result, the signal of interest in the binaural superdirective beamformer's outputs is in phase but the white noise components in the outputs are random phase, so the human auditory system can better separate the acoustic signal of interest from white noise by listening to the outputs of the proposed approach. Experimental results show that the derived binaural superdirective beamformer is superior to its conventional monaural counterpart.
Year
DOI
Venue
2021
10.3390/s21010074
SENSORS
Keywords
DocType
Volume
microphone arrays, binaural beamforming, heterophasic, superdirective beamformer, white noise gain, directivity factor, beampattern, interaural coherence
Journal
21
Issue
ISSN
Citations 
1
1424-8220
0
PageRank 
References 
Authors
0.34
15
5
Name
Order
Citations
PageRank
yuzhu wang1146.71
Jingdong Chen21460128.79
Jacob Benesty31386136.42
Jilu Jin400.34
Gongping Huang57613.39