Title
Distribution Network-Constrained Optimization of Peer-to-Peer Transactive Energy Trading Among Multi-Microgrids
Abstract
This article proposes a two-level network-constrained peer-to-peer (P2P) transactive energy for multi-microgrids (MGs), which guarantees the distribution power network security and allows MGs to trade energy with each other flexibly. At the lower level, a P2P transactive energy is employed for multi-MGs to trade energy with each other. A multi-leader multi-follower (MLMF) Stackelberg game approach is utilized to model the energy trading process among MGs. We prove the existence and the uniqueness of the Stackelberg equilibrium (SE) and provide the closed-form expression for SE. For privacy concerns, we provide several distributed algorithms to obtain SE. At the upper level, the distribution system operator (DSO) reconfigures the distribution network based on the P2P transactive energy trading results by applying the AC optimal power flow considering the distribution network reconfiguration. If there are any network violations, DSO requests trading adjustments at the lower level for network security. We reformulate the DSO operation problem in a mixed-integer second-order cone programming (MISOCP) model and ensure its solution accuracy. Numerical results for a 4-Microgrid system, a modified IEEE 33-bus and 123-bus distribution power system show the effectiveness of the proposed transactive model and its solution technique.
Year
DOI
Venue
2021
10.1109/TSG.2020.3032889
IEEE Transactions on Smart Grid
Keywords
DocType
Volume
Peer-to-peer transactive energy,network reconfiguration,multi-leader multi-follower Stackelberg game
Journal
12
Issue
ISSN
Citations 
2
1949-3053
4
PageRank 
References 
Authors
0.40
0
6
Name
Order
Citations
PageRank
Mingyu Yan192.88
Mohammad Shahidehpour235575.28
Aleksi Paaso3121.58
Liuxi Zhang451.10
Ahmed Alabdulwahab5868.23
Abdullah Abusorrah612117.75