Title
Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture.
Abstract
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47 similar to 83 kPa(-1) and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 mu m and spacer thickness of 800 mu m exhibited high sensitivity (similar to 171.5 kPa(-1)) in the pressure sensing range of 0 similar to 20 kPa, fast response (100 similar to 110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.
Year
DOI
Venue
2020
10.3390/s20226588
SENSORS
Keywords
DocType
Volume
pressure sensor,stretchable sensor,wearable electronics,artificial skins
Journal
20
Issue
ISSN
Citations 
22
1424-8220
0
PageRank 
References 
Authors
0.34
0
7
Name
Order
Citations
PageRank
Jun-Ho Lee122421.56
Jae Sang Heo201.35
Keon Woo Lee300.34
Jae Cheol Shin400.34
Jeong-Wan Jo500.34
Yong-Hoon Kim601.01
Kyu Sung Park7709.24