Title
Reduction of Price Volatility using Thermostatically Controlled Loads in Local Electricity Markets
Abstract
Price volatility in electricity markets could significantly increase as a result of the increase in demand due to the electrification of heating and transport and intermittent power generation from large scale integration of renewable energy sources. In some parts of the grid, price volatility may be even more extreme due to congestion. Energy storage and price responsive demand provide a potential source of flexibility to reduce excessive variations in price. In this paper, we investigate the potential of one such type of price responsive demand, namely thermostatically controlled loads, to mitigate against this adverse economic effect through a coordination mechanism that gives explicit constraints on the local electricity price. In a simulation based study that focuses on an energy community situated in a congested part of the distribution grid, we investigate to what extent thermostatically controlled loads can provide load reduction in order to cap prices at a specified limit. Results show that congestion and the resulting price spikes can effectively be mitigated by exploiting the thermal inertia of the households.
Year
DOI
Venue
2020
10.1109/ISGT-Europe47291.2020.9248977
2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)
Keywords
DocType
ISBN
price volatility,local electricity markets,intermittent power generation,renewable energy sources,energy storage,price responsive demand,local electricity price,thermostatically controlled loads,load reduction,large scale integration,distribution grid,coordination mechanism,price spikes,thermal inertia
Conference
978-1-7281-7101-2
Citations 
PageRank 
References 
0
0.34
3
Authors
3
Name
Order
Citations
PageRank
Shantanu Chakraborty110.77
Remco A. Verzijlbergh2233.16
Zofia Lukszo39431.29