Title
Impact of Representation Learning in Linear Bandits
Abstract
We study how representation learning can improve the efficiency of bandit problems. We study the setting where we play T linear bandits with dimension d concurrently, and these T bandit tasks share a common k(≪d) dimensional linear representation. For the finite-action setting, we present a new algorithm which achieves O~(TkN+dkNT) regret, where N is the number of rounds we play for each bandit. When T is sufficiently large, our algorithm significantly outperforms the naive algorithm (playing T bandits independently) that achieves O~(TdN) regret. We also provide an Ω(TkN+dkNT) regret lower bound, showing that our algorithm is minimax-optimal up to poly-logarithmic factors. Furthermore, we extend our algorithm to the infinite-action setting and obtain a corresponding regret bound which demonstrates the benefit of representation learning in certain regimes. We also present experiments on synthetic and real-world data to illustrate our theoretical findings and demonstrate the effectiveness of our proposed algorithms.
Year
Venue
DocType
2021
ICLR
Conference
Citations 
PageRank 
References 
0
0.34
0
Authors
4
Name
Order
Citations
PageRank
Jiaqi Yang100.34
Wei Hu2698.37
Lee, Jason D.371148.29
Simon Du421029.79