Title
Directed Attenuation To Enhance Vaccine Immunity
Abstract
Many viral infections can be prevented by immunizing with live, attenuated vaccines. Early methods of attenuation were hit-and-miss, now much improved by genetic engineering. However, even current methods operate on the principle of genetic harm, reducing the virus's ability to grow. Reduced viral growth has the undesired side-effect of reducing the host immune response below that of infection with wild-type. Might some methods of attenuation instead lead to an increased immune response? We use mathematical models of the dynamics of virus with innate and adaptive immunity to explore the tradeoff between attenuation of virus pathology and immunity. We find that modification of some virus immune-evasion pathways can indeed reduce pathology yet enhance immunity. Thus, attenuated vaccines can, in principle, be directed to be safe yet create better immunity than is elicited by the wild-type virus.Author summaryLive attenuated virus vaccines are among the most effective interventions to combat viral infections. Historically, the mechanism of attenuation has involved genetically reducing the viral growth rate, often achieved by adapting the virus to grow in a novel condition. More recent attenuation methods use genetic engineering but also are thought to impair viral growth rate. These classical attenuations typically result in a tradeoff whereby attenuation depresses the within-host viral load and pathology (which is beneficial to vaccine design), but reduces immunity (which is not beneficial). We use models to explore ways of directing the attenuation of a virus to avoid this tradeoff. We show that directed attenuation by interfering with (some) viral immune-evasion pathways can yield a mild infection but elicit higher levels of immunity than of the wild-type virus.
Year
DOI
Venue
2021
10.1371/journal.pcbi.1008602
PLOS COMPUTATIONAL BIOLOGY
DocType
Volume
Issue
Journal
17
2
ISSN
Citations 
PageRank 
1553-734X
0
0.34
References 
Authors
0
3
Name
Order
Citations
PageRank
Rustom Antia1297.23
Hasan Ahmed200.68
James J Bull300.34