Title
Discovering IoT Physical Channel Vulnerabilities
Abstract
ABSTRACTSmart homes contain diverse sensors and actuators controlled by IoT apps that provide custom automation. Prior works showed that an adversary could exploit physical interaction vulnerabilities among apps and put the users and environment at risk, e.g., to break into a house, an adversary turns on the heater to trigger an app that opens windows when the temperature exceeds a threshold. Currently, the safe behavior of physical interactions relies on either app code analysis or dynamic analysis of device states with manually derived policies by developers. However, existing works fail to achieve sufficient breadth and fidelity to translate the app code into their physical behavior or provide incomplete security policies, causing poor accuracy and false alarms. In this paper, we introduce a new approach, IoTSeer, which efficiently combines app code analysis and dynamic analysis with new security policies to discover physical interaction vulnerabilities. IoTSeer works by first translating sensor events and actuator commands of each app into a physical execution model (PeM) and unifying PeMs to express composite physical execution of apps (CPeM). CPeM allows us to deploy IoTSeer in different smart homes by defining its execution parameters with minimal data collection. IoTSeer supports new security policies with intended/unintended physical channel labels. It then efficiently checks them on the CPeM via falsification, which addresses the undecidability of verification due to the continuous and discrete behavior of IoT devices. We evaluate IoTSeer in an actual house with 14 actuators, six sensors, and 39 apps. IoTSeer discovers 16 unique policy violations, whereas prior works identify only 2 out of 16 with 18 falsely flagged violations. IoTSeer only requires 30 mins of data collection for each actuator to set the CPeM parameters and is adaptive to newly added, removed, and relocated devices.
Year
DOI
Venue
2022
10.1145/3548606.3560644
Computer and Communications Security
DocType
Citations 
PageRank 
Conference
0
0.34
References 
Authors
0
6
Name
Order
Citations
PageRank
Muslum Ozgur Ozmen162.84
Xuansong Li2729.93
Andrew Chu312820.52
Z. Berkay Celik485143.59
Bardh Hoxha5689.13
Xiangyu Zhang62857151.00