Title
A Hybrid Stochastic Gradient Hamiltonian Monte Carlo Method
Abstract
Recent theoretical analyses reveal that existing Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) methods need large mini-batches of samples (exponentially dependent on the dimension) to reduce the mean square error of gradient estimates and ensure non-asymptotic convergence guarantees when the target distribution has a nonconvex potential function. In this paper, we propose a novel SG-MCMC algorithm, called Hybrid Stochastic Gradient Hamiltonian Monte Carlo (HSG-HMC) method, which needs merely one sample per iteration and possesses a simple structure with only one hyperparameter. Such improvement leverages a hybrid stochastic gradient estimator that exploits historical stochastic gradient information to control the mean square error. Theoretical analyses show that our method obtains the best-known overall sample complexity to achieve epsilon-accuracy in terms of the 2-Wasserstein distance for sampling from distributions with nonconvex potential functions. Empirical studies on both simulated and real-world datasets demonstrate the advantage of our method.
Year
Venue
DocType
2021
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
Conference
Volume
ISSN
Citations 
35
2159-5399
0
PageRank 
References 
Authors
0.34
0
5
Name
Order
Citations
PageRank
Chao Zhang185.49
Zhijian Li223.41
Zebang Shen3179.36
Jiahao Xie402.03
Hui Qian55913.26