Title
The Complexity Of Object Association In Multiple Object Tracking
Abstract
Object association, i.e., the identification of which observations correspond to the same object, is a central task for the area of multiple object tracking. Two prominent models capturing this task have been introduced in the literature: the Lifted Multicut model and the more recent Lifted Paths model. Here, we carry out a detailed complexity-theoretic study of the problems arising from these two models that is aimed at complementing previous empirical work on object association. We obtain a comprehensive complexity map for both models that takes into account natural restrictions to instances such as possible bounds on the number of frames, number of tracked objects and branching degree, as well as less explicit structural restrictions such as having bounded treewidth. Our results include new fixed-parameter and XP algorithms for the problems as well as hardness proofs which altogether indicate that the Lifted Paths problem exhibits a more favorable complexity behavior than Lifted Multicut.
Year
Venue
DocType
2021
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
Conference
Volume
ISSN
Citations 
35
2159-5399
0
PageRank 
References 
Authors
0.34
0
3
Name
Order
Citations
PageRank
Robert Ganian120840.19
Thekla Hamm211.71
Sebastian Ordyniak317630.27