Title
Fast Self-Supervised Clustering With Anchor Graph
Abstract
Benefit from avoiding the utilization of labeled samples, which are usually insufficient in the real world, unsupervised learning has been regarded as a speedy and powerful strategy on clustering tasks. However, clustering directly from primal data sets leads to high computational cost, which limits its application on large-scale and high-dimensional problems. Recently, anchor-based theories are proposed to partly mitigate this problem and field naturally sparse affinity matrix, while it is still a challenge to get excellent performance along with high efficiency. To dispose of this issue, we first presented a fast semisupervised framework (FSSF) combined with a balanced <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -means-based hierarchical <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> -means (BKHK) method and the bipartite graph theory. Thereafter, we proposed a fast self-supervised clustering method involved in this crucial semisupervised framework, in which all labels are inferred from a constructed bipartite graph with exactly <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> connected components. The proposed method remarkably accelerates the general semisupervised learning through the anchor and consists of four significant parts: 1) obtaining the anchor set as interim through BKHK algorithm; 2) constructing the bipartite graph; 3) solving the self-supervised problem to construct a typical probability model with FSSF; and 4) selecting the most representative points regarding anchors from BKHK as an interim and conducting label propagation. The experimental results on toy examples and benchmark data sets have demonstrated that the proposed method outperforms other approaches.
Year
DOI
Venue
2022
10.1109/TNNLS.2021.3056080
IEEE Transactions on Neural Networks and Learning Systems
Keywords
DocType
Volume
Bipartite graph,label propagation,self-supervised learning,semisupervised framework,special selection
Journal
33
Issue
ISSN
Citations 
9
2162-237X
0
PageRank 
References 
Authors
0.34
41
4
Name
Order
Citations
PageRank
J. Wang147995.23
Zhenyu Ma210.68
Feiping Nie37061309.42
Xuelong Li415049617.31